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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2344

METHOD FOR CALCULATING DOWNWASH FIELD DUE TO LIFTING SURFACES
AT SUBSONIC AND SUPERSONIC SPEEDS

By Sidney M. Harmon

SUMMARY

A method utilizing source singularities is presented for obtaining
the linearized downwash field due to lifting wings of infinitesimal
thickness at subsonic and supersonic speeds. The distribution function
for the source singularities is specified by the loading on the wing.
The method is applied to derive generalized formulas for the downwash
field due to uniformly loaded swept and rectangular wings at subsonic
and supersonic speeds. The utilization of these formulas to obtain the
downwash due to wings of arbitrary loading is indicated. An example of
the procedure is given in which specific formulas are derived for the
dowvnwasgh field due to a rectangular wing at supersonic speeds for a
uniform loading and for & linear chordwise variation in loading.

INTRODUCTION

Several methods based on linearized theory are available to obtain
the downwash field due to lifting surfaces at subsonic and supersonic
speeds for use, &s an example, in stability calculations. The calcu-
lation of the downwash field at subsonic speeds has relied almost
exclusively on Prandtl's 1lifting-line theory, which is based on the
concept of a horseshoe vortex (for example, reference 1). Present
methods for calculating the downwash field at supersonic speeds are
those utilizing conical flows (reference 2), potential doublets (refer-
ence 3), vortices (references 4 and 5), and pressure doublets (refer-
ences 6 and 7). The integrations required of the foregoing vortex
or doublet singulerities or in the conical-flow method in order to
obtain exact solutions of the linearized equations for l1ifting surfaces
have generally been found to be difficult; therefore practice has
usually had reccurse to approximate methods based on lifting-line
theories (references S5 and 7).

The present report, prepared at the NACA Lewis laboratory, indi-
cates & method that is intended to facilitate the computations for
obtaining the exact linearized downwash field due to 1lifting surfaces
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at subsonic and supersonic speeds. The method utilizes source singu-
larities with the distribution function specified by the loading on
the surface. The method is applied herein to derive formulas for the
downwash field due to uniformly loaded swept and rectangular wings of
jnfinitesimal thickness at subsonic and supersonic speeds. The utili-
zation of these formulas to obtain the downwash field due to wings of
arbitrary loading, by means of the correspondence relations presented
in reference 8, is then indicated. An example of the procedure is
given in which specific formulas are derived for the rectangular wing
at supersonic speeds for & uniform loading and for a linear chordwise

variation in loading.

SYMBOLS
The following symbols are used in this report:

4,B,C4,0C refer to regions bounded by foremost Mach aft cone
corners of rectangular wing at supersonic speed

D.,Ds,...D
12722 S (plan view of regions in fig. 3)

a constant used to describe prescribed linear chordwise

variation in loading

B = VME - 1 (also used to refer to Mach cone region as
indicated in fig. 3)

Bl = \‘l-M

b arbiltrary constant

c chord for rectangular wing

h wing semispan

Iy refers to integral and solution expressed by equa-
tions (25b) and (25e), respectively

I, refers to integral and solution expressed by equa-
tions (25c) and (25g), respectively

K constant in equation (1) (X = g; at subsonic speeds;

1
K== at supersonic speeds)

2121
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M

U,V,W

Uo

=]

on,yoi WXQ:YO

free-stream Mach number

cot A, where A 1is angle of sweep of wing leading
edge (fig. 1)

At )22 [(y-m %2
’\/(;'-E ,)z_Bz(y,zﬂ"a)

disturbance velocities of fluid in flow field along
x-, y-, and z-axes, respectively (fig. 1)

value of u on upper surface of wing for uniform
prescribed loading

refers to downwash due to left half of wing

refers to downwash due to uniform prescribed loading
on wing

refers to downwash due to linear chordwise variation
in prescribed loading on wing

contribution to downwash of continuous portion of
leading edge for semi-infinite oblique wing with
uniform loading shown in figure 1; also represents
downwash due to semi-infinite line source originating
at leading edge of center section

contribution to downwash of discontinuity of leading
edge at origin in semi-infinite oblique wing with
uniform loading shown in figure 1

downwash due to term in series formed by expressing u
on wing as function of X, y, and ug

contribution to downwash of streamwise side edge for
semi-infinite oblique wing with uniform loading
shown in figure 1; also represents downwash due to
semi-infinite streamwise line source originating .
at leading edge of center section

represents downwash due to semi-infinite line source
originating at (xo,yo) on right and left halves of

wing, respectively
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Subscriptis:

A,B,Cl,C2

DDy« ++Dg

NACA TN 2344
rectangular coordinates with origin at leading edge
of center section (fig. 1)

oblique coordinates related to rectangular coordinates
according to ecuations (5)

rectangular coordinates indicating origin of semi-
infinite line source

y-h
v+

contribution to downwash of wing cut-off at trailing
edge for uniform loading

infinitesimal distance in y-direction across side
edge

auxiliary variables used to replace X, ¥, 2, x',
y', and z', respectively

B’\}ya2+z2
W e
'\/ B2 (y2+22)

B2 (y'2+z‘2)

upper limit for integral in equation (7) (See dis-
cussion following equation (7).)

region of integration (See discussion following
equations (1) and (3).)

function representing solution of linearized pertial
differential equation (2)

refer to corresponding regions indicated in figure 3

L

2121
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refers to chord at center section of swept wing

Cpr

cy refers to chord at tip section of swept wing

L,s,T,LD,TD refer to continuous portion of leading edge, side
edge, trailing edge, discontinuity in leading edge,
and discontinuity in trailing edge, resnectively

U1 refer to upper and lower surfaces of airfoil,

respectively

Single or successive subscript coordinates indicate partial
differentiation with respect to subscript variable.

xs,yt indicates partial differentistion with respect to x
and y, s and t ‘imes, respectively

BASIC THEORY

The analysis is based on the usual assumptions for thin airfoils
in the linearized potential field. A solution for the disturbance
parameters can thus be obtained by integrations of source and doublet
singularities in the plane of the wing (z = 0). The basic equation is
(for example, references 9 and 10)

J ~
Q(x,y,2) = - %ff 11—.(;}- - B—ZQA) + (§2,7€y) so-z- (%;):‘ 4 dn (1)
T

where the function (2 is a solution of the linearized rartial differ-
ential equation for subsonic and supersonic flows

—Bngx+ny+sz =0 (2)

In equation (1), r = ’\/(x— E)Z-Ba Ry-n) 2+ZBJ and the region T

includes the entire z = O plane that can influence the point (x,y,z).
At subsonic speeds, the factor K is equal to l/Zn. At supersonic
speeds, the factor K is equal to l/ﬁ and only the finite part of

the integral is used. It i1s important to note that the function ) can
represent either the velocity potential or any of its derivatives, ard
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if all these values vanish sufficiently far ahead of the wing, the
integrals of £ are solutions of equation (2). In case the deriva-
tive of §i beccmes infinite at one or more points, the substitution
of this derivative for Q in equation (2) depends on the condition
that the isolation of each sing iarity yields a finite integrand in
the limit.

- W

2121

SOURCE DISTRIBUTION FOR DOWNWASH FIELD

A 1lifting wing of infinitesimal thickness is considered. The
perturbation veloeity u vanishes everywhere in the 2z = 0 plane
except on the wing itself, and the perturbation velocity Vv vanishes
everywhere in the z =0 plane except on the wing and in the wake.
In equation (1), letting Q = w and noting that

o
A
[}

- ()

<
L
]

- (v'ﬂ)l
result in

w(X,¥,2) = - Kff% (Bzug-vn) ag an (3)
T

where T represents one surface of the wing and of the wake that can
influence the point X,y,z. The quantity vy is a function of u
through the irrotationality relation

Therefore,

x 4
v = J/’ up ag (4a)
33
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X " '
vy = f upn a8 _ (4b)

6L,

According to equation (3), the perturbation velocity w at any
point in the flow field due to & lifting surface is determined by an
integration of elementary source solutions with the distribution
function given by (Bzu§—vn).

THE SEMI-INFINITE OBLIQUE WING WITH UNIFORM LOADING

An important application of equation (3) can be obtained by con-
sidering a semi-infinite oblique wing with uniform loading (fig. 1).

.The origin of the coordinate system is taken at the intersection of

the leading and side edges, where both edges extend to infinity. For
uniform loading, the term u:; in equation (3) vanishes everywhere over
the region 7T except across the leading edge. 1In evaluating the dis~
continuities in uw or v that occur across the edges, a limiting
procedure is used throughout the present analysis, which corresponds
to the assumption of a linear variation in u or v across an
infinitesimal strip of the edge. The distribution of v over the
region 7 for this type of loading, as obtained from equation (4a),
is showm in figure 2, and v, is seen to vanish everywhere except
across the edges. In terms of equation (3), therefore, the downwash
field for a semi-infinite oblique wing of uniform loading is obtained
by means of a line integration of sources along the edges.

It is subsequently shown that the downwash solutions for the semi-
infinite line sources along the leading and slide edges may be used by
simple manipulation to obtain the downwash field for finite plan forms
of uniform loading.

The Semi-Infinite Oblique Leading Edge

The semi-infinite oblique leading edge with origin at (0,0,0) con-
tributes to ug and v along the edge and, by virtue of the dis-
continuity of the edge at the origin, contributes to vn along the

x-axis beginning at the origin and extending backwards to infinity.
(See distribution of v in fig. 2.) The downwash contribution of
the continuous portion of the leading edge is designated w3 whereas

the contribution of the edge discontinmuity at the origin is designated

WLD .
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Contribution of contimuous portion of leading edge. - The integra-
tion of equation (3) along the oblique leading edge is most conveniently
performed in terms of an oblique system of coordinates, such that

x' = x—mBzy -}

y' = y-mx } (5)

z' = z’VE-szz "]

It may be shown that the differential equation (2) is inverient under
the change of variables x—wx', y—»y', and z—»z' at both subsonic
and supersonic speeds. If £ (x,y,z) is a solution of equation (2),
(x',y',2') is therefore also a solution. For other examples of the
use of the oblique transformation in wing-theory problems, see refer-
ences 11 to 13.

In the oblique coordinate system, equation (3) evaluated along
the wing leading =dge becomes

1
v (x',y',2") = -Kf 7T wZ,An'dE' (6)
L .
where
r! o= V(X"E')Z-BZ(Y'E“i“Z'Z)
Noting that
2 V., -1B2 T
(v ) =Bugv v+ -1B (un, Vg)
z'L > 5
1l-m™B

and along the leading edge for an infinitesimal strip of width An’',

u,,=v, =20
€' b

0

' TR e—
anAT] o
un,An' = -u,

2121
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results in

2
UO V 1 -Bzmz Qﬁl

WL(X'}Y':Z') =K m (7)

!
0o

At subsonic speeds, the upper limit ié = >, and the integral is
divergent. In actual cases, however, this divergence does not present
any difficulty because the construction of the finite leading edge by
means of the superposition of two semi-infinite leading edges of
opposite sign leads to the result that the infinite upper limit
cancels. At supersonic speeds, ﬁé is the position of the last

source with Mach aftercone including the point x',y',z'; that is,

2'2 = x'-B‘\/y'2+z'2

Integration of equation (7) yields the following expressions for
the line source originating at (0,0):

At subsonic speeds,

'u0\/l+m2B12

WL(X,y,Z) = — sinh i (ga)
d
where
by = VIl (3'24212)
and

B, = f\/ 1-M8

In equation (8a), the term that arises from substituting the upper
1imit of integration has been neglected because, as indicated pre-
viously, it vanishes for leading edges of finite lengths.

At supersonic speeds, for Bm < 1 (subsonic leading edge),

u '
wL(x,y,z) = ;% V1-B2m® cosh~! g; (8v)
d
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and for Bm > l'(supersonic leading edge), equation (8b) becomes

u
O - 1 4
wL(x,y,z) =- = ﬂ/BZmZ-l cos™1 ?T A (8e)

d

In equations (8) and in all subsequent expressions, the positive
value in a raedical term must be preserved when extracting the root.

For example, if
y< O

then

’\[F = ‘\I(-y)2 = -y = |¥|

For a leading edge normal to the flight direction, m = » and
equations (8) yield the following expressions:

At subsonic speeds,
B
L (8a)

At supersonic speeds,

Bu
(0] =1 -By
w (X,¥,2) = =~ — €08™ ————= (8e)
f ARt 7 Af-2
x2-3222

It is shown by equations (8) that the downwash fields wp con-

tributed by the obligue and normal leading edges are conical, or W
is constant along radial lines emanating from the origin.

Contribution of leading-edge discontinuity at origin. - From fig-
ure 2, it can be seen that the leading edge cut-off at the origin

results in
u .
0
= - 9
vdAn = (9a)
slong the semi-infinite side edge. When equation (9a) is substituted
into equation (3) (with uy equel to zero along the side edge), there

results

3

R

2121
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z

2

Ku . |
o) d
wp(0¥2) = - & | @ (sb)

where E? is the position of the last source that can influence the
point x,v,z; that is, at subsonic speeds, iz is at infinity; and at

supersonic speeds,
gg = x-B Vyz-l—zz

Integration of equation (9b) yields the following:
At subsonic speeds,

(x,5,2) = - 22 sinnL & (108)
v p(%,5,2) = - =8 1Y . a

where the term arising from the infinite upper limit of integration has
been neglected because it vanishes for leading edges of finite length

and .
Eq = VY (y2+22)

At supersonic speeds,

u
0 -1 X 10b) .
wiD(x,y,z) = - — cosh™t = (100)

It is shown by equations (10) that the downwash contribution of the
leading-edge discontinuity at the origin results entirely from the
obliquity of the leading edge. Thus, if the leading edge is normal to
the flight direction, this contribution vanishes.

The Semi-Infinite Streamwise Side Edge

Along the streamwise side edge, the quantity u, vanishes; thus

the source-distribution function along this edge is proportional only
to the quantity v,.

The details of evaluating the contribution of the streamwise side
edge to the downwash field are given in the appendix. The results for
the semi-infinite left streamwise side edge are as follows:
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At subsonic speeds,

2
B. “u.y
1L "0 1 2%
wa(x,¥52) = - + == (11a)
S an x +Vx2+£d2 idz
At supersonic speeds,
2
Buny
0 X (11b)

1
wo(X,¥,2) = -
g\ XY : D
T\ x +4x8-83° Eq

Equations (11) show that the downwash contribution of the streamwise
side edge is independent of the obliquity of the leading edge.

FINITE WINGS WITH UNIFORM LOADING

The downwash field due to finite wings with uniform loading can
be obtained by superimposing the fields due to & number of semi~infinite
wings of the type considered in the previous section (fig. 1). This
superposition is equivalent to superimposing the fields due to the
source lines expressed by equations (8), (10), and (11).

A plan form with curved edges requires an infinite number of
source lines. If the edges are composed of straight-line segments,
however, & finite number of source lines can be used to represent the
plan form.

 Swept Wings with Streamwise Tips

Let the downwash field due to a semi-infinite line sourée
beginning at x.,y, be denoted by W ; let the subscripts

L, S, T, LD, and TD refer to the leading, side, and trailing edges

and the leading- and trailing-edge discontinmuities, respectively, all for
the right half-wing; and let W refer to the effect of the source

lines originating on the left half-wing. Then, the downwash field for

a uniformly loaded wing, which is symmetrical with respect to the

x-axis and which has uniformly swept leading edges and streamwise tips,
is given by the following sum:

R ]

1212
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wo = | (W) - (w+W) - | (wW) = (wW) -
0 c
[\ 00 " " 4 00 Bt
m

m L,LD T,TD

() - (), :I (128)

In equation (12a) and in the subsequent expressions, the upper and
lower signs preceding & term refer to the right and left helf-wings,
respectively.

The downwash fields due to the semi-infinite line sources indi-
cated in equation (12a) can be obtained by simple menipulation of equa-
tions (8), (10), and (11). The following transformations are made to
obtain the effect of a semi-infinite line source originating at Xxg5,¥p:

x in equations (8), (10), and (11)

X-XO

(12b)

y in equations (&), (10), and (11) = ¥(y-yp)

Equations (8) and (10) can also be applied to a semi-infinite line
source along the trailing edge by replacing m in these equations
with the cotangent of the sweep angle of the trailing edge. '

At subsonic speeds, every point in the field is affected by all
the terms in equation (12a); whereas at supersonic speeds, the point
is affected only by those terms that refer to edges which lie within
the Mach forecone from the point under considerstion.

Rectangular Wings

For the rectangular wing, the edge discontinuities LD and TD
disappear and equation (12a) becomes
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Wy = I:(W“'ﬁ)o’o - (W"'ﬁ)o’ﬂJL - ‘:(w+ﬁ)c,o - (w+ﬁ)°,’ﬂ;‘.r -

[ o) 4, - (w+ﬁ)c’ﬂ;]S (12¢)

WINGS WITH ARBITRARY LOADING

If the wing loading is an arbitrary function of x and VY, the
integration in equation (3) for the downwash field is, in general,
required over the entire wing surface and in the wake. An alternative
sprocedure in this case is the use of "correspondence formulas' &as
indicated in reference 8 by means of which the downwash field due to
a variable loading may be expressed in terms of the downwash field due
to a uniform loading with the addition of corrections for the edges of

the plan form.

In reference 8, it is shown that if u on the wing is expressed
in a series as & function of x and y in terms of the uniform
prescribed velocity ugy and any term in the series is differentiated

with respect to x and y, s and t times, respectively, such that

(u)xsyt = buy (on wing) - (13a)

where b is a constant; then subject to edge corrections, there
results

(wn,k) xsyt (x,5,2) = bwo(x:)’) z) (13p)

where w k and wb refer to the downwash fields due to the term in

the serieé and to a uniform loading, respectively. The edges of finite
plan forms may alter the given relation (13a) so that edge corrections
mey be required for the relation expressed by equation (13b). At
supersonic speeds, the relation given by equation (13b) thus applies

to finite wings at all points in the flow field outside of the Mach
aftercone from the edges that alter the given relation (13a) on the
wing. Correspondence formulas for rectangular wings at subsonic and
supersonic speeds are given in reference 8, table I.

2121
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ILLUSTRATIVE EXAMPLE FOR RECTANGULAR WING
AT SUPERSONIC SPEEDS

As an illustration of the method described herein, the downwash
field is obtained at supersonic speeds for a rectangular wing with
uniform loading and with linear chordwise variation in loading. The
lettered regions in the subsequent discussion refer to figure 3.

Uniform Loading

For the rectangular wing with uniform loading at supersonic speed,
equations (8e), (11b), and (12c¢) are applicable.

Region A. - In the region within the leading-edge Mach cones and
outside of the side-edge and trailing-edge Mach cones,

(Wo)A(X}Y;Z) = (WO,O+ﬁO,O)L

Bu - -By -
= - 29 [cos™t BV __ 4 cos7t ——_gz;—f_. = -Bu, (14)
T xz—Bzz2 ‘sz-Bzz2

Region B. - In the region within the trailing-edge Mach cones and
outside of the side-edge Mach cones,

(WO)B(X)Y.'Z) = (WO)A - (WC,O + WC,O)T

Bu - -B3 - B
= -Buo + —;9 cos™t g = + cos™t ——————3%;—7——-
,VE;~C) -B°z AV(x-c) ~BZ32

(15)
Region C. - Region C, which refers to points outside the trailing-
edge Mach cones, is divided into two subregions depending on whether
the point lies within one or both side-edge Mach cones.

Region Cy+ - If the point lies within one side-edge Mach cone,
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(VO)Cl(X)Y:Z) = (WO)A - (WO,h)L - (WO,h)S

Bug -1 -Bya 1 Py
= (wn), + —— |cos -By. -
NERE LV W S A
Bu -
= - 220 leos™ Ja +Byg 1 - xz (186)
g :vcd-BZz2 x+’Vx2-€a2 ia.
where
§o = B‘Vyaz+z2
and
Vg = ¥-h
Region Cp. - For points within both side-edge Mach cones,
= - (w - (W

(vig) ¢ (%s752) = (g) e, Gig,-nlz = ¢ o,-h)s

(wa)a + cos™t il +By: = X

= v—— — 1 b ————ene, -
07Cy A/xC-Bez2 x+‘V§§:Eb§ Ebz
where # (17)
ib = B‘\/yb2+z2,
and
Vp = y+b

Region D. - Region D refers to points that are always within Mach
cones from tne leading, side, and trailing edges. This region is sub-

divided into five regions, as shown in figure 3.

Region Dy. - For points in Dy,
= (w + Bu 18
T ( O) C'} O ( )

(Wo)Dl(X):Y:Z) = (WO)C]_ - (WC,O + WC,O)T

1212
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Region Do. - For points in Do,

(wo)DE(X)y)Z) (wo)cl + Buo + (WC,h)T + (Wc,h)S

1
P Y
=

Bya 1 _ X-cC (19)

Region DS' - For points in DS’

(vo)p (x,5,2) = (WO)Dl - Gio,nd - (7, s
Bug -1 By, 1 X
= (w ) + -——| cos +By; -
o’p; T g Neesiz Pl A 2
1 XB_BEZB X+ XE"EbZ Eb
(20)

Region Dy. - For points in Dy,

(VO)D4(X)3’)Z) = (WO)D2 - (‘_’o,-h)L - (;TO,—h)S = (WO)DZ + (WO)D3 - (WO)Dl
(21)

Region D5. - For points in D5,

(WO)DS(X:Y:Z) = (WO)D4 + (ﬁh,-h)T + (ﬁé’_h)s

Bug - By
(V())D4 - ~— | CO0S 1 )

" 'V(x-c)z-Bzz2

+

By, - - X (22)
X~C+ﬂ/(x-c)2-&b2 3%
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I,inear Chordwise Loading

For linear chordvise loading, let
(23a)

u, = augx (on wing)

The downwash field for this type of
orrespondence formulas of refer-
h field obtained in the preceding
upersonic speed.
jnear chordwise

where & and uy are constants.

loading can be obtained by using the ¢
ence 8 in conjunction with the downwas
section for the uniformly loaded rectangular wing at s
if Wy and Yy refer to the downwash fields due to 1

loading and to uniform loading, respectively, then from reference 8,
table I, for all points outside the trailing-edge Mach cones,

X
Wl(x:Y)Z) = af WO(F:Jy}Z) dag (ZBb)
Bz :
and for points within the trailing-edge Mech cones,
X
W]_(X:Y:Z) = a[f Wo(i:f)’:z) ag+ C(AW())T(X):Y:Z% (23c)
Bz

where (ANO)T refers to the effect of the wing cut-off at the trailing

edge for uniform loading.

Region A. - For the region within the leading-edge Mach cone and
outside the side-edge and trailing-edge Mach cones, equations (23Db)
and (14) are applicable and there results

(wy) p(5,y,2) = -aBug (x-B2) (24)

- In the region within the trailing-edge Mach cones and

Region B.
outside the side-edge Mach cones, equations (23c), (14), and (15) yield
c+Bz
(Wl)B(X,y,z) = -aBuOtj“ af + acBug = O (25)
. Bz

hin one or both side-edge Mach cones

Region C. -~ In the region wit
equation (23b) applies.

and outside the trailing-edge Mach cones,

2121
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Region Cy. - For points in region C;, equation (23b) may be

written

. X X
(w]_)cl(x)yiz) =8 LZ WO(EJy:Z) di: a J;Z (Vo)cl(i,y,Z) dE

]

X
- ?Eu—gf cos™t s ag +
% Bz :V§°-B§z§ '
X
1 £ ag (26a)

By ~ =
) s AR2-g 2 g,°
a

In equation (26a), wo(i,y,z) is represented as (wb)cl (equation (18))
throughout the entire range of integration because (wo)cl evaluated
in region A is equal to (wy), (equation (14)), inasmuch as the

imaginary part is discarded.

Equation {26a) requires the evaluation of the following integrals:

X
B .
I, = f cos”t —22__ 4¢ (26b)
B |

. ‘ng_BZZZ

where Bya and Bzz2 sre constants, and

X
1 3 '
I2=f at (26¢)
4, 2 2 2
ga E"" g'ga Ea
wvhere §g5 is a constant.

The solution for Il obtained by integration by parts and simpli-
fication is
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By BygXx
-1 a -1 X -1 a
1.(x,¥.,2)= X COS ~ —————=— ~-By, cosh - Bz cos
1 a’ r_—xz—Bzzz a 'E; ta Nx -Bzzz_
(26d)
The solution for Ig is
1. ) = % cosn £ - X -t (26
2(%:¥gs2) = 7| cosShT g - T e)

Utilizing the solutions for I, and I, given by equations (264)
and (26e), equation (26a) yields for points in region C within one side-
edge Mach cone,

aBu
0
(Wl)cl(X:Y:Z) = - "5 [?1(x:ya’z) + ByaIZ(x’ya’Zi] (26f)

Region Co. - For points in region C within both side-edge Mach

cones, equation (23b) may be written

X
af wo(&}Y’z) d&

Bz
X
aBu -1 By
—9 J]; . cO8 L at +

]

(wl)CZ(X:Y:Z)

= (Wl) Cl + - . /\/2_2___3_2_25
X ) i | .
‘ 3 )
BYy, f 1 - ag (27a)
by \e+Afe2-5,2 b

where wq(f,y,z) has been obtained from equations (16) and (17).
Utilizing the solutions for I; and Iy given in equations (26d)
and (26e), in which y, and ¢, ore replaced by ¥y and £y,
respectively, changes equation (27a) to yield

aBu

0
(), (o) = (i) + 2 | Tlowse) + B, I, (%5:7) |
L (270)

- ——
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Region D. - In the region within the trailing-edge Mach cone and
within one or both side-edge Mach cones, equation (23c) applies.

Region Dy . - For points in region Dy, the integral in equa-

tion iZScS becomes

x :
aj; wo( €,¥,2) af = (wl)Cl + aBu J‘Y ag = (Wl)Cl + aBug (x~c-Bz)

% c+Bz
(2ga)

where wy(§,y,z) has been obtained from equations (16) and (18).

The quantity (Awg)p in equation (23c) is evaluated for this case
as the difference between (W'O)Dl and (wo)cl; that is, from equa-
tion (18), (Amo)T = Buy. When these results are combined, equa-
tion (23c) yields

(Wl)Dl(X,y,Z) = (wl)Cl + a‘:Buo (X—BZ) (ze‘b)

Region Dp. - For points in region Dz, the integral in equa-

tion 22305 becomes

+

X X
aBu By,
a w.(&,y,2)dak= (w,). + —0 cos™t & at
0 176, 7 22,2
Bz c+Bz (£-c)e-B2z

: 1 t-c
By, ag (29a)

esg, \FerAli-0)?-g 2 ta’

where w(§,v,2) has been obtained from equations (16) and (19). The
integrals in equation (292) may be evaluated by utilizing the solutions
for I; and I, as expressed by equations (26d) and (26e). In these
solutions x 1s replaced by x-c. The quantity (Amo)T in equa-

tion (23c) is evaluated in this case as the difference between (WC)D

and (wo)C . When these results are combined, equation (23c) yields
3 ,
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aBu .
0
(wi)Da(X7Y)Z) = (Wi)cl + Il(x-c,ya,z) + ByaIz(X'c:ya:Z) +

- B -
c|cos™t Ve +Byg = - £ g
Z 2 2 2, 2 &g
(%-¢)"-B 'z x-c+ Y(x-¢) - 4

(29b)

Region Dz. - For points in region Dz, equation (23c) yields

(Wl)DS(X’y’Z) = (Wi)Dl +

X
aBu By,
0 f cos™t b dag +
B

x 1 £
By, f — L . (30a)
tp \E+VE"-8)7 b’

where wo(i,y,z) has been obtained from equations (18) and (20) and the

term (AWO)T

may be evaluated by utilizing the solutions for Il and I, as
expressed by equations (26d) and (26e). In these solutions, yg is
replaced by yy; thus

is included in (W'l)D . The integrals in equation (30a)
1 .

aBu
0 .
(vy)p(,7,2) = (Wl)Dl + — I:Il(x,yb,Z) + By, Iz(x,yb,ZZI (30b)
Region Dy. - For points in region Dy, equation (23c) yields
(Wl)D4(X:Y;Z) = (wi)DZ + (Wi)DS - (Wi)Dl (31)

where wo(ﬁ,y,z) has been obtained from equations (19) and (21).

T2tz
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Region Dg. - For points in region Dg, equation (23c) yields

-

tela

aBu
0
(wl)DS(xJ;Y)Z) = (wl)D4 [ cos

B .

-1 Jb at
T >
c+Bz V(E~c)2-Bzz“

+

-1 Byy, 1 X

— +Byb
A(x-c) 2-B2z2 x-c+‘V(x-c)2-£b2 &

N0

(32a2)
where wo(i,y,z) has been obtained from equation (22). The integrals
in equation (322) may be evaluated by utilizing the solutions for Il and

. I, as expressed by equations (26d) and (26e). In these solutions,

x 1is replaced by x-c, and Yy, and Ea are replaced by y, and £b,
respectively. Thus

aBu
0
(Wl)DS(X;Y:Z) = (Wi)D4 - T Il(x‘c:ybyz) + By Iz(x’C;YbJZ) +
- Bj ' -
¢ | cos 1 b +Byb ‘ 1 - x‘g
‘V(x-c)z—Bzz2 x-c+‘V(x-c)2-§b2 38
(32p)

Lewis Flight Propulsion Leboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 22, 1951.
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APPENDIX
DERTVATION OF DOWNWASH FIELD DUE TO SEMI-INFINITE
LEFT STREAMWISE SIDE EDGE

The subseguent derivation for the downwash field refers to the

left streamwise side edge of the uniformly loaded semi-infinite oblique
wing, as shown in figure 1.

The downwash field contributed by the side edge may be obtained by

means of equation (3), in which the integral is evaluated along the side
edge. As noted in the text, the quantity

ug is gzero along the stream-
wise side edge (of width An); therefore,

WS(X)Y:Z) = Kf Xﬂilil'g
. S

(A1)
_Across the side edge there is an abrupt increase in u. This
increase is assurmed to occur over an infinitesimal width € across the
side edge. Then according to equation (4a),
X uo
0 [%
At y = €, however, un due to the side edge vanishes and therefore
v(x,€,0) = O (A3)
The distribution of v in the vicinity of the side edge (y = 0)
is shown in the following sketch:

o
(@)
»

|

Y —

21
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25
It is assumed that the gbrupt changes in v indicated in the
sketch occur over the infinitesimal distances An, so that along the
line (£,0,0),
uOE
= — A4
VAN = (a4)
and along the line (£,¢,0),
N
S (45)

Substituting these values for le.AT] into equation (Al) results in

>, x~B y2+22
Ku

o

£ at _
0 Af(x-£)2-B?(y°+2°)
oy X-B '\/(y-e)2+z§

Ws(x:y’ z) =

°|

£ af
0 /\/(x-i)z-Bz(y—c)2+zz

(As)

where the two upper limits refer to subsonic and supersonic speeds,
respectively. Integration of equation (A8) yields

Ki
ws(x,y,z) = —:—O- {-x log lx—E + /\/(x-i)z-Bz(y2+z2)‘ +

«, Xx-B y2+z2

’\/(x-E)Z-BZ(y2+z2}O +

{x log

x-§ + '\/(x—E)Z--B2 [(y-c)2+z2_.]
@ X-B ‘\/( :,r-c)2+zE

Af(x-£)2-B8[(y-¢ ) 229

0

(A7)
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When the 1limits are substituted into equation (A7) and ¢ is
made to approach zero, the following results are obtained:

At subsonic speeds,

2
Bi'ugy [ 1 2x

WS(X,,Y, z) = 5
an / <
X+ X2+Ed2 Ed

where

+ supersonic speeds,

Bzuoy

1
welX,¥y,2) = R
SyHad : ;2
T x+‘Vx2—id2 Sa
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Flight
direction >y,
[
cot m
Leading edge
%, €
Side o
edge Uniform loading «€ ug

[~

Figure 1. - Seml-infinite oblique wing with uniform loading.
Origin is at leading edge of center section.




29

*Buipsol wWIoJIun y3im 3UTH anbITgo @3TUTJUT-TWOS Jo aoeJans dJeadn uo JO uoiINGIa3sIg - *g eJandig

! [

(*xTpusdde eag) On IH -

) x-n X . On
[ x c _ | . __ q c
al _
wEOHumOOH
=) -
(0 = @ A pa-BurpeeT A

98pe 9pTs FuoTE JUB3ISUOD = £
v - T d~gq uoT309g

X UoT408g

R

e

ERIE]

. 9pIs @dpa Juipwat

JN Jo uotqnqrajuco ¢
B UOF3BOOT

Wvaum:ﬁvmmq
£

w -)4—-:50,E——')'

(*xTpuadde o3g) o3ps oprs Jo uoTINqIIquon ———

8dps Buipme
x¥n

B -

JUBGSUOD = X
e~2 UOT308%-

£

Re—

B O

Tx

1
<
NP
(AN
mm A
3
<1,
a




0wy
M &
3 v
C , @
= L
|
sgouod 1Je UdeW . - g sandra )

. dns 1® SulM aqeindueqodad aoJ saTdwexd UT PSJISPTSUOD suoTdaa Jo malA uBld T
Mm TRUOTSUSUTP-99JU] JO suotqaod £q pepunoq suoTdoY gpasads oTuosdadns 3 T T | M
= . 2
= 0
<
g
z

S

ea

Iy

aT3ue
YoEH]

UoF3084TP
UITT



*POYEBOTPUT ST BUTPBOT AJIBILTIqJB JO SJUTM 0%
STp YSBAUMOP 9773 UTBLQO 04 SBINWIOJ 9S573 JO UOISBZTTIIAN
oyl °*sposads oTuosaadns pur OTUOSONS 3E SSUTH JIBINS
-ueq091 pue 2doms POPBOT ATWIOITUN 09 NP PISTJI USBAUMOD
271 J0J SBINWIOI POZITBJISUSZ SATJISD 09 poiTdde ST poyzsw
oyl ‘spoeds otuosgadns pur OTUOSUNS 4B SJUTM BUTLITT 0%
aNp PTOTI USBMUMOD DPOZTJIBSUTT 9UY3 SUTUTBLJC J0J pPojuss
-2ad ST SOSTATIBRINIUTS 90Jn0s JUTZTTTIN poyzsu Y

10BI3SqY

*pPeq1BOTPUT ST Surpeol AIBILTQJIB JO SSUTM 0%
SNp YSBMUMOD 9Y] UTBLQO 09 SBINUWIOT 289Yq JO UOTABZTTIAN
oyl, °speads oTuosasdns pur OTUOSONS 9® STUTM JeTND
-ueq09d pue 1doss PopeOT ATWIOITUN OF SNP PTRTJI USBAUMOD
919 J0J SBINWIOJ POZITBISUST SATISP 05 PoTTdde st poyssu
syl *sposads otuosaadns puB OTUOSNS 4® SBUTM JUTQITT 0%
oNp PTSTJ USBAUMOD PSZTJIBSULT 9UYq7 SUTUTBLIQO JO0J PoOjusds
-oad ST SSTATIBINSUTS 92an0s JUTZTITIGN POULISW V

30BIISqY

*PoABOTPUT ST BuTpBOT AIRILTgIE JO SJUTM ©O9
2Np YSBAUMOD Sy UIBRQO 0% SBINWIOT 95943 JO UOTABZTTIAN
2yl ‘*speads oTuosgedns pur OTUOSONS 4B SJUTM JTRINS
-ueqo91 pue 1dsMs DPOPBOT ATWICITUN OF SNP PTSTJI USBAUMOD
SYq JO0J SBINWIOI POZTIBISUSZ oaTaep 07 paTTdde st poyzsm
oyl °*speods otuosaadns pue 2TUOSANS 4B SJUTM SUTIITT O
onp PTOTI USBAUMOD POZTJIBSIUTT 9UY3 SuTulelqo JOJ pajuss
-2ad ST SSIQTIBTNSUTS 90In0s JUTIZTITIAN POYISW Y

10BI1SqY

*PeqeOTPUT ST JutprOT AJBILTQIE JO SIUTM 01
NP YSBAUMOD 9YF UTBIQO 07 SBINWIOJ 2s2yYyd JO UOTZRZTITIAnN
oyl °*spoeds oTuosasdns pur oTuUOSqNS 4B SJUTA IBINS
-uBq09I pue qdoMs POSPEROT ATWIOIIUN 09 aup PTSTI UYSBAUMKOD
9Yyq JI0J SEINWIOJ POZITEJIOUSZ aATIap 041 partTdde sT poyssu
oyl ‘*spsods otuosasdns purR oOTUOSANS 4® STUTH JUILAITT 01
onp PTSTJ USBAUMOD DPSZTJBSUIT 9yq JUTUTBLQO JI0J DPI1USS
-oxd sT SOTQTJIBINIUTS 30Jn0S JUTZTTTAN PoUlSwW Y

10BIYSqY




(PTS osJ8A8Y UO 30BIFSAY)

TG6T TTady
P22 NL VOVN

*uowIsy ‘W Loupis Ag

*gpoadg oTuUOSIadng puB oTUOSQNS 3B S30BJIANS
SUT1ITT 03 onp PTSTA UsSBAUMOJ JUTFBTNOTB) JIO0J POUISH

TN

dosmg - 995TdmO) ‘SBUTM

¢z 2 2 T

(°PTS osa9A9Y UO 30BIFSAY)

TG6T TTady
PSS ML VOVN

‘ucwIrg °*W LoUupTsS L9

*gpoadg oruosaadng PuB OTUOSQNS 3B S90VIING
SUT3ITT 03 onp PTOTI USBAUMOQ SUTYBINOTBD JI0J POUGSW

A

T*2°2'T Lxooyy, - o3oTdwo) ‘sIuUTM

(9PTS osdsasy UO 30®JI}SqAY)

TGE6T TTady
¥¥22 NI VOVN

*UuoWLIBY W ASUPTS A€

*speads oTuosgadng puB STUOSANS 48 $908BIING
SUT3ITT 03 onp PTOTd UsSeAUMo( BUT4ETNOTB) IO DPOUISW

- TN

S

g2t dTuosaadng ‘MOTJ

(°PTS 9sJ849Y U0 40BJIISAY)

TG6T TTady
7922 NI VOVN

‘uomael °*W AsupisS Ag

*spoadg oruosaadng pum oTuosSqnS 1B £908BIING
SUT4JTT 0% onp PIOTL USBAUAOQ SUTHETNOTB) JI0J POUISH

=P

S

T°2°'T°'1 oTuosgng ‘MoTd




